MATHEMATICS
 CLASS-XII

Time:-2:15 hrs
M.M: 100

General instructions:
(i) All questions are compulsory.
(ii) The question paper consists of 27 questions divided into 3 sections $-A, B$, and C. Section A comprises of ten questions of 1 mark each, Section B comprises of 12 questions of 4 marks each,
Section C comprises of 7 questions of 6 marks each.
(iii) All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
(iv) In question on construction, the drawing should be neat and exactly as per the given measurements.
(v)Use of calculators is not permitted

Section - A

Questions numbers 1 to 10 carry 1 mark each

1. Let f, g and h be functions from R to R. Show that $(f+g)$ oh=foh+goh.
2. Evaluate: $\left(\left[\begin{array}{cc}1 & 3 \\ -1 & -4\end{array}\right]+\left[\begin{array}{cc}3 & -2 \\ -1 & 1\end{array}\right]\right]\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]$.
3. Find the rate of change of the area of a circle with respect to its radius when $\mathrm{r}=3 \mathrm{~cm}$.
4. Find the value of x if $\left[\begin{array}{llll}1 & x & 1\end{array}\right]\left[\begin{array}{lll}1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ x\end{array}\right]=0$.
5. If $\mathrm{A}=\left(\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right)$ and $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Find x and y such that $\mathrm{A}^{2}=\mathrm{xA}+\mathrm{yI}$.
6. Evaluate: $\int \tan ^{-1} \sqrt{\frac{1-\sin x}{1+\sin x} d x}$

[^0]7. Evaluate: $\int \frac{x^{2}+1}{x^{4}+1} d x$.
8. If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\pi$, prove that $x+y+z=x y z$.
9. Evaluate: $\int \frac{\cos x}{(1-\sin x)(2+\sin x)} d x$.
10. Find the foot of the perpendicular drawn from the point $\mathrm{P}(1,6,3)$ on the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$. Also find its distance from P.

Section - B

Questions numbers 11 to 22 carry 4 marks each
11. If $\mathrm{A}=\mathrm{R}-\{3\}$ and $\mathrm{B}=\mathrm{R}-\{2\}$ and $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ is a mapping defined by $\mathrm{f}(\mathrm{x})=\frac{x-2}{x-3}$. Show that f is bijective.
12. Two unbiased dice are tossed simultaneously. Find the probability that the sum of the numbers will be a multiple of 3 or 5 .

Or
There are two bags. The first bag contains 4 white and 2 black balls, while the second bag contains 3 white and 4 black balls. A bag is picked up at random and a ball is drawn out. Find the probability that it is a white ball.
13. Solve the differential equation: $\mathrm{x}\left(1+\mathrm{y}^{2}\right) \mathrm{dx}-\mathrm{y}\left(1+\mathrm{x}^{2}\right) \mathrm{dy}=0$, given that $\mathrm{y}=0$ when $\mathrm{x}=1$.
14. Solve the differential equation: $\frac{d Y}{d X}-\frac{Y}{x}=2 x^{2}$.
15. Discuss the continuity of the function at $\mathrm{X}=0 . f(x)= \begin{cases}\frac{|x|}{x} & \text {, if } x \neq 0 \\ 0 & \text {,if } x=0\end{cases}$
16. Differentiate $\sqrt{ } \sin x$ w.r.t. x from first principle.

Or
Differentiate the following w.r.t. $\mathrm{x}:(\mathrm{x})^{\cos \mathrm{x}}+(\cos \mathrm{x})^{x}$.
17. A point source of light along a straight road is at a height of ' a ' metres. A boy ' b ' metres in height is walking along the road. How fast is his shadow increasing if he is walking away from the light at the rate of c metres per minute?
18. If $\vec{a} \times \vec{b}=\vec{a} \times \vec{c} \neq=0$, show that $\vec{b}=\vec{c}+t \vec{a}$, for some scaler t .
19. Using properties of determinants, prove the following: $\left.\left|\begin{array}{lll}b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y\end{array}\right|=\begin{array}{lll}a & b & c \\ p & q & r \\ x & y & z\end{array} \right\rvert\,$.
20. Evaluate: $\int_{0}^{\pi / 2} x^{2} \cos 2 x d x$.

Or

Using properties of definite integrals, evaluate the following:
$\int_{0}^{\pi / 2} \sin 2 x \log \tan x d x$.
21. Prove that: $\tan ^{-1}\left(\frac{\sqrt{1+x-\sqrt{1-x}}}{\sqrt{1+x+\sqrt{1-x}}}\right)=\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x, x \in\left[0, \frac{\pi}{4}\right]$.
22. A coin is tossed 12 times. Find the probability of getting exactly 10 tails.
Section - C

Questions numbers 23 to 29 carry 6 marks each

23. If a, b and c are the lengths of sides to $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$ respectively of $\triangle \mathrm{ABC}$, then show that $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$.
24. An urn contains 5 white and 3 red balls. Find the probability distribution of the number of red balls, with replacements, in three draws.
25. Using matrices, solve the following system of linear equations: $3 x+4 y+2 z=8,2 y-3 z=3$, $x-2 y+6 z=-2$
26. Find the largest possible area of the right angled triangle whose hypotenuse is 5 cm .

Or
Prove that the radius of the right circular cylinder of the greatest curved surface that can be inscribed in a given cone is half of the radius of the cone.
27. Using integration, find the area of the region enclosed between two circles $x^{2}+y^{2}=1$ and $(x-1)^{2}+y^{2}=1$.

Or
Using integration, find the area bounded by the curve $\mathrm{x} 2-4 \mathrm{y}$ and the straight line $\mathrm{x}=4 \mathrm{y}-$ 2.
28. Find the equation of the plane that passes through the points $(1,1,0)(1,2,1)$ and $(-2,2,-$ 1).

cbse $\delta_{\text {gress }}$	CBSEGuess.com

29. A furniture dealer deals only in two items - tables and chairs. He has Rs. 10,000 to invest and a space to store at most 60 pieces. A table cost him Rs. 500 and a chair Rs. 200. He can sell a table at a profit of Rs. 50 and a chair at a profit he buys. Using linear programming formulates the problem for maximum profit and solve it graphically.

[^0]: CBSE Sample Papers \mid CBSE Guess Papers \mid CBSE Practice Papers \mid Important Questions \mid CBSE PSA | CBSE OTBA | Proficiency Test | 10 Years Question Bank | CBSE Guide | CBSE Syllabus \| Indian Tutors | Teacher' Jobs CBSE eBooks | Schools | Alumni | CBSE Results | CBSE Datesheet | CBSE News

